
INTERFACE SCIENCE

Temperature dependence of fractal dimension of grain boundary
region in SnO2 based ceramics
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Abstract Fractal dimensions of grain boundary region in

doped SnO2 ceramics were determined based on previously

derived fractal model. This model considers fractal

dimension as a measure of homogeneity of distribution of

charge carriers. Application of the derived fractal model

enables calculation of fractal dimension using results of

impedance spectroscopy. The model was verified by

experimentally determined temperature dependence of the

fractal dimension of SnO2 ceramics. Obtained results

confirm that the non-Debye response of the grain boundary

region is connected with distribution of defects and con-

sequently with a homogeneity of a distribution of the

charge carriers. Also, it was found that C–T–1 function has

maximum at temperature at which the change in dominant

type of defects takes place. This effect could be considered

as a third-order transition.

Introduction

Impedance spectroscopy (IS) analysis of ceramic materials

enables separation of bulk and boundary components of

the conductivity [1, 2]. In an ideal case, the result of IS

measurements over a wide range of frequencies can be

presented by several semicircles in the complex ZRe–ZIm

plane (Nyquist plot) [2, 3]. Measured values in the form of

Nyquist plots are rarely ideal semicircles. Most of the

authors describe them as depressed and/or deformed

semicircles, with the center lying below the x-axis. This

phenomenon, called non-Debye relaxation [4, 5], is

attributed to the distribution of Debye relaxation with

different time constants [6]. There are several papers in

the literature [1, 7–9] treating this phenomenon very

systematically.

Depressed semicircle in impedance spectra could be

presented by equivalent circuit containing CPE (constant

phase element). In literature already exist some models that

consider existence of CPE in equivalent circuit of rough

surfaces using fractal theory [10–12]. However, these

models couldn’t explain temperature dependence of fractal

dimension.

Recently, we proposed a novel fractal model to explain

non-Debye response in ceramics materials with highly

resistive grain boundaries [13]. This model gives a physical

explanation of parameter b from the Davidson–Cole

equation (Eq. 1).

Z ¼ ZRe þ j � ZIm ¼ RG þ
RGB

ð1þ jxRGBCÞb
ð1Þ

where Z is the overall impedance, ZRe and ZIm are the real

and imaginary components of the impedance, RG is the

resistance of the grains interior, RGB is the resistance of the

grain boundary region, b is a constant, while C represents

the capacitance of the grain boundary region.

It has to be pointed out that this model considers a

region inside the grains, close to the grain boundaries,

with laterally inhomogeneous distribution of defects and

dopants and consequently inhomogeneous distribution of

charge carriers. Inhomogeneous distribution of the charge

carriers in the vicinity of grain boundaries results in local
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fluctuations in the resistance of this region. These effects

lead to a non-ideal response of the grain boundary region.

Based on these assumptions the fractal model was con-

structed and the equation that connects the fractal dimen-

sion with the parameter b from the Davidson–Cole

equation was derived.

Observation and determination of lateral distribution of

the charge carriers in the vicinity of one-grain boundary is

almost impossible using microscopic techniques, such as

SEM, TEM or even HRTEM. On the other hand J. R.

Macdonald stated that a model that treats non-Debye

relaxation in ceramics could be valid only if it enables

explanation of temperature dependence of depression angle

[14]. Because of that in this work the fractal model was

verified by experimentally determined temperature depen-

dence of the fractal dimension of doped SnO2 ceramics

which is typical example of electroceramics with highly

resistive grain boundaries.

Experimental procedure

SnO2 samples containing small quantities of CoO were

prepared by the method of evaporation and decomposition

of solutions and suspensions. Starting materials were: SnO2

and Co(CH3COO)2. Samples were prepared by the fol-

lowing procedure:

Appropriate amount of Co(CH3COO)2 was dissolved in

25 ml of water to obtain solution according to desired

composition of final powder mixture. Further, 5 g SnO2

powder (surface area = 6 m2/g) was suspended in solution

of Co(CH3COO)2. Suspension was stirred and heated on

the hot magnetic plate and dried at 410 K for 5 h. Obtained

powder mixture was milled in agate mortar and calcined at

1373 K. After thermal treatment the obtained powder had

the compositions of 99 mol. % SnO2 + 1 mol. % CoO.

Powders of undoped SnO2 and CoO doped SnO2 were

isostatically pressed at 250 MPa in pellets sized approxi-

mately 1 mm in height and 8 mm in diameter and sintered

in synthetic air (mixture of O2 and N2) at 1623 K for 2 h

(compositions with Co2+), and 1823 K for 8 h (undoped

SnO2). Sintered samples were characterized by ac imped-

ance spectroscopy (HP 4192A) in frequency range from

100 Hz to 1 MHz, using Au sputtered electrodes. Mea-

surements were performed in air or N2 atmosphere.

Results and discussion

Fractal model

It is necessary to briefly present the main features of the

derived fractal model for better understanding of the

experimental results. It is assumed that there is no homo-

geneous spatial distribution of defects and dopants in the

vicinity of grain boundaries. These effects result in later-

ally inhomogeneous distribution of charge carriers and are

supposed to be the main reason for the non-Debye

behaviour of the grain boundaries. It is also assumed that

the grain boundary is a smooth plane, but there are dif-

ferences in distribution of defects in the vicinity of the

grain boundary which result in different resistances across

the grain boundary region (Fig. 1a). If the region in the

vicinity of the grain boundary is observed with one reso-

lution, it could be represented by boxes with different

heights, where the height of the box is proportional to the

resistance (Fig. 1b). Hence, boxes with larger resistance

are higher and vice versa. The associated capacitance is

proportional to the area (S) of the surface normal to the

electrical field direction. This surface also has its own

resistance, proportional to S–1 named as the interface

resistance. If the resolution is increased it will be possible

to recognize non-uniformity within each box, so that each

box could be divided into new boxes with uniform resis-

tance and capacitance, and so on. It was also assumed that

the observed region could be treated as a fractal object. A

region in the vicinity of the grain boundary, shown in

Fig. 1b, could be divided into M parts (not necessarily of

the same shape) with the same surface area and the same

concentration of charge carriers. An example of such a part

is shown in Fig. 1c. Magnification of this picture by factor

a (scaling factor) will show that each part has local inho-

mogeneities, i.e., there are N randomly distributed boxes

with a higher resistance within each part. Resistance RB is

the resistance of the whole part up to z = h. Capacitance of

that surface (z = h) is C and the interface resistance is RI.

The resistance of each of the N boxes has the value

RB1 = a Æ RB, capacitance has the value C1 = C/a2, and

interface resistance is RI1 = RI Æ a2. Further magnification

by a reveals a new layer with RB2 = a2 Æ RB1, C2 = C/a4,

and RI2 = RI Æ a4 etc. The impedance of a whole region in

the vicinity of the grain boundary is Ztot = Z(x)/M, where

Z(x) represents the impedance of the part shown in Fig. 1c.

The equivalent circuit for such part is given in Fig. 2 and

can be described by the following equation

ZðxÞ ¼ RB þ
1

1þjxRIC
RI
þ N

RB�aþ 1
1þjxRIC

RIa2
þ N

RB �a2þ 1
1þjxRIC

RIa4
þ N

RB �a3þ 1
1þjxRIC

RIa6
þ:::::

ð2Þ

Using a simple mathematical procedure it is possible to

simplify and solve this equation. A solution of the Eq. (2) is

in the form of the Davidson–Cole equation, where K is
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constant, and other symbols have the earlier defined

meanings.

ZðXÞ ¼ KX�b ¼ Kð1þ jxRIC
RI

Þ�b ð3Þ

Considering the definition of the deterministic fractal

dimension as ds = ln N / ln a it is possible to get final

equation which connects the fractal dimension (ds) with

parameter b:

dS ¼ 1þ b: ð4Þ

The complete derivation procedure was given in the Ref.

13. This fractal dimension is related to the inhomogeneous

distribution of charge carriers in the vicinity of the grain

boundary surface.

Fractal dimension of the doped SnO2

Using the results of fitting of IS (Fig. 3) with Davidson–

Cole equation and Eq. (4) the values of fractal dimension

(dS), resistance (R) and capacitance per unit area of a grain

boundary (C) were determined based on brick-layer model.

a) b)

c)

Fig. 1 (a) Region in the

vicinity of grain boundaries

considered by fractal model, (b)

inhomogeneous distribution of

defects in the vicinity of the

grain boundary resulting in

different resistance (parts with

different resistance are shown as

boxes of different heights), (c)

one part of grain boundary with

self-similar properties

Fig. 2 The equivalent circuit of

the model shown in Fig. 1c
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Obtained values of capacitances are characteristic for grain

boundary regions [15]. Changes of dS, C and lnR as the

functions of temperature of the samples are given in Fig. 4.

All samples show same behaviour: Curves C–T–1 and ds–

T–1 have extreme values at the same temperature as the

temperature at which function lnR–T–1 have change in

slope. Change in slope of function lnR–T–1 is consequence

of change in dominant type of defects. For example, in

sample doped with 1% of Co2+(measured in N2) one type

of defects (energy level) is dominant for temperatures

lower than 680 K, i.e. at temperatures lower than 680 K the

ionization of one type of defects is dominant. For tem-

peratures around 680 K there is high influence of other

defect level, which start to be the dominant one after

680 K. Fractal dimension shows minimal value around

680 K, i.e. at temperature at which is the highest disorder

of the system. Further increase in temperature results in

ionization of another type of defects and a second type

of energy level is dominant, so the fractal dimension

increases. This means that in this temperature interval the

homogeneity of the charge carriers increases.
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Fig. 3 AC impedance spectroscopy spectra of samples: (a) pure

SnO2, and (b) SnO2 + 1% CoO measured in N2
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b)Fig. 4 Fractal dimension,

capacitance and lnR as a

function of temperature of SnO2

samples: (a) pure SnO2, (b)

SnO2 + 1% CoO measured in

air, (c) SnO2 + 1% CoO

measured in N2
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If we assume that the polarization P is proportional to

local electric field E [16],

~P ¼ e0ðer � 1Þ~E; ð5Þ

and that the classical Gibbs free energy (G) can be written

as:

G ¼ H � TS �~P~E; ð6Þ

then the second partial derivative of G related to E is:

@2G
@E2
¼ 2e0ðer � 1Þ; ð7Þ

i.e. the second derivative of Gibbs energy (@
2G
@E2) is linear

function of �r. Since different ionized defects have different

dipole moments then function @er
@T / @3G

@E2@T has discontinuity

at 680 K, indicating the existence of third-order transition.

Comparison of the functions given at Fig. 4 b and c,

showed that the lower values of ds are obtained in atmo-

sphere of N2. Bearing in mind that sintering was performed

in air and that consequently defect equilibrium was

achieved in air, it is logical that measurements in N2 will

change defect concentrations, especially at the grain

boundaries closer to the open pores. This inhomogeneous

change in defect concentrations will introduce more

disorder into the system.

Obviously, it is possible to explain temperature depen-

dence of the fractal dimension, i.e. parameter b from the

Davidson–Cole equation, using the fractal model of the

grain boundary region of ceramics. The fractal dimension

and other electrical parameters of the grain boundary, such

as resistance and capacitance, are connected to distribution

and concentration of charge carriers, which are on the other

hand strongly dependent of temperature. Consequently it is

easy to explain temperature dependence of these charac-

teristic parameters as it was done in above given analysis.

Conclusions

The fractal dimensions of pure and CoO doped SnO2

ceramics were calculated based on previously derived

fractal model of the grain boundary region in ceramics

materials. Comparative study of temperature dependence

of the fractal dimension and temperature dependence of

other electrical parameters (capacitance and resistance)

confirmed connection of fractal dimension with homoge-

neity of distribution of charge carriers. It was found that

introducing of ds as characteristic parameter of grain

boundaries, through the given fractal model, has real

physical meaning. Also, it was found that �r–T function has

maximum at the same temperature at which function ds–T–1

have minimum and that is the temperature at which change

in dominant type of defects takes place. This effect could be

considered as a third-order transition.
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